Standards

Use this page to find products correlated to a specific standard. Simply enter the standard and press "Search".

CCSS.Math.Content.2.MD.D.9

Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units

0 correlations

 

CCSS.Math.Content.2.MD.D.10

Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems1 using information presented in a bar graph.

0 correlations

 

CCSS.Math.Content.2.G.A.1

Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces.1 Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.

0 correlations

 

CCSS.Math.Content.2.G.A.2

Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.

0 correlations

 

CCSS.Math.Content.2.G.A.3

Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identic

0 correlations

 

CCSS.Math.Content.3.OA.A.1

Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7.

0 correlations

 

CCSS.Math.Content.3.OA.A.2

Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8

0 correlations

 

CCSS.Math.Content.3.OA.A.3

Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.1

0 correlations

 

CCSS.Math.Content.3.OA.A.4

Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 × ? = 48, 5 = _ ÷ 3, 6 × 6 =

0 correlations

 

CCSS.Math.Content.3.OA.B.5

Apply properties of operations as strategies to multiply and divide.2 Examples: If 6 × 4 = 24 is known, then 4 × 6 = 24 is also known. (Commutative property of multiplication.) 3 × 5 × 2 can be found by 3 × 5 =

0 correlations

 

CCSS.Math.Content.3.OA.B.6

Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.

0 correlations

 

CCSS.Math.Content.3.OA.C.7

Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 × 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, know from memory

0 correlations

Cookies help us deliver our services. By using our services, you agree to our use of cookies. Learn more